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ABSTRACT
In this paper, we study the distributed optimization problem for a system of agents
embedded in time-varying directed communication networks. Each agent has its own
cost function and agents cooperate to determine the global decision that minimizes
the summation of all individual cost functions. We consider the so-called push-pull
gradient-based algorithm (termed as AB/Push-Pull) which employs both row- and
column-stochastic weights simultaneously to track the optimal decision and the gra-
dient of the global cost while ensuring consensus and optimality. We show that the
algorithm converges linearly to the optimal solution over a time-varying directed net-
work for a constant stepsize when the agent’s cost function is smooth and strongly
convex. The linear convergence of the method has been shown in Saadatniaki et al.
(2020), where the multi-step consensus contraction parameters for row- and column-
stochastic mixing matrices are not directly related to the underlying graph structure,
and the explicit range for the stepsize value is not provided. With respect to Saadat-
niaki et al. (2020), the novelty of this work is twofold: (1) we establish the one-step
consensus contraction for both row- and column-stochastic mixing matrices with the
contraction parameters given explicitly in terms of the graph diameter and other
graph properties; and (2) we provide explicit upper bounds for the stepsize value
in terms of the properties of the cost functions, the mixing matrices, and the graph
connectivity structure.
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1. Introduction

We consider a system of n agents embedded in a communication network with the
goal to collaboratively solve the following minimization problem:

min
x∈Rp

f(x) =
1

n

n∑
i=1

fi(x), (1)

where each function fi : Rp → R represents the cost function of agent i, is strongly
convex and known by agent i only. The strong convexity condition implies that prob-
lem (1) has a unique optimal solution. The agents want to determine the optimal
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solution by performing local computations and limited information exchange with
their local neighbors in the communication network. Decentralized and collaborative
approach is particularly appealing in large-scale, multi-agent systems with privacy
concerns and limited computation, communication, or storage capabilities. In these
scenarios, the data is collected and/or stored in a distributed manner, thus, comput-
ing tasks are distributed over all the agents and information exchange occurs only
between the agents with direct communication links. Such problems appear in many
engineering and scientific applications for example in wireless sensor networks [19],
distributed sensing [1], trajectory optimization for formation control of vehicles [27],
large-scale machine learning [29], and cooperative multi-agent systems [20].

Distributed optimization of the sum of convex functions has been of considerable
interest and many algorithms have been proposed including gradient-based methods
[7, 8, 21, 26, 35], dual averaging methods [2], ADMM [25], and Newton methods
[6, 30]. Early works have often assumed that the underlying network is undirected
(see literature review in [5]) and most commonly require doubly stochastic or weight-
balanced [4] mixing matrices. Reference [24] uses a gradient difference structure in
the algorithm to provide the first-order method that achieves a geometric convergence
with the requirement of symmetric weights. Based on the ADMM approach, the work
in [25] demonstrates a linear convergence while the Nesterov’s acceleration method in
reference [12] obtains convergence times that scale linearly in the number of agents.
Reference [23] investigates decentralized algorithms that take advantage of proximal
operations for the non-smooth terms. In [15, 16], stochastic variants of distributed
methods have been considered for asynchronous computations.

In many scenarios, agents communications are directed such as, for example, due
to broadcasting at different power levels, thus resulting in communications that cor-
respond to directed graphs. To cope with directed graphs, reference [28] introduces
a subgradient-push algorithm to achieve consensus among the agents on an optimal
point. The work in [9] further studies the push-sum technique for time-varying di-
rected graphs with a convergence rate of O(ln t/

√
t) for diminishing stepsizes. Aiming

to improve the convergence rate, algorithms ADD-OPT [33] and Push-DIGing [10]
incorporates the push-sum protocol with gradient estimation approach, and show ge-
ometric convergence for a sufficiently small step-size. The implementation of these
methods require the knowledge of agents’ out-degree in order to construct a column-
stochastic weight matrix, which is later removed in [32] and in FROST method [36].

The aforementioned push-sum based works use an independent algorithm to asymp-
totically compute the right or left eigenvectors of the weight matrix, corresponding to
the eigenvalue of 1. Thus, the resulting algorithms are nonlinear and involve additional
computation among agents. Unlike the push-sum protocol, the alternate AB/Push-Pull
methods introduced in [17, 35] use a row-stochastic matrix and a column-stochastic
matrix simultaneously to achieve a linear convergence. Recent work in [14] further ad-
dresses the challenge of noisy information exchange and shows linear convergence (in
expectation) to a neighborhood of the optimum exponentially fast, under a constant
stepsize. The analysis of AB/Push-Pull (with stochastic gradients) was shown in [34].
A variant of the method, where the stepsize α is agent dependent, has been analyzed
in [17] for the case of a static graph. All the aforementioned work on the AB/Push-Pull
methods is for a static directed graph. The AB/Push-Pull method for time-varying di-
rected graphs has been studied in [22], where a linear convergence is shown for the case
when the global objective function is smooth and strongly-convex, and the underlying
time-varying graphs have bounded connectivity. In order to facilitate privacy design,
the recent work in [31] proposes to tailor gradient methods for differentially-private
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distributed optimization. The work in [3] provides a general gradient-tracking based
privacy-preserving algorithm with added randomness in optimization parameters and
shows that the added randomness has no influence on the accuracy of optimization.

In this paper, we considerAB/Push-Pull algorithm where the agent communications
are given by a sequence of time-varying directed graphs. At every time k, the agents’
updates are described by two non-negative matrices that are compliant with the con-
nectivity structure of the graph: a row-stochastic matrix for the mixing of the decision
variables (pull-step) and a column-stochastic matrix for tracking the average gradients
(push-step). We prove that the method converges to the optimal solution geometrically
fast, provided that the stepsize is small enough and the agents’ objective functions are
smooth enough. Moreover, we provide an explicit upper bound for the stepsize range
and characterize the convergence rate in terms of the problem parameters, algorithms’
parameters (weight matrices), and the underlying graphs’ connectivity structures.

A key difficulty in the analysis is imposed by the time-varying nature of the mixing
matrices. Our analysis makes use of time-varying weighted averages and time-varying
weighted norms, where the weights are defined in terms of stochastic vector sequences
associated with the mixing matrix sequences. This allows us to establish consensus
contractions per each update step for both row- and column-stochastic mixing ma-
trices. This is unlike the work in [22] that considers the AB/Push-Pull method over
time-varying graphs, where the analysis makes use of the Euclidean norms – at the
expense of relying on a multi-step consensus contraction, even when every underly-
ing graph is strongly connected. Moreover, through the use of time-varying weighted
norms and the relations of the weight matrices with the underlying graphs, we pro-
vide explicit upper bounds for the stepsize range in terms of properties of the mixing
matrices and the graphs’ connectivity structure. This is in sharp contrast with [22]
where no explicit range is provided. Also, our analysis in this paper is in contrast
with [17, 34] where the stepsize range is given in terms of the singular values of the
weight matrices, which are neither explicitly capturing the structure of the matrices
nor the underlying graph connectivity structure.

The structure of this paper is as follows. We first provide notation, introduce our
algorithm and state basic assumptions in Section 2. We present some basic results in
Section 3. We establish the convergence properties of the algorithm in Section 4 and
Section 5, and we conclude with some remarks in Section 7.

2. Notation and Terminology

Throughout the paper, all vectors are viewed as column-vectors unless stated oth-
erwise. We use ⟨·, ·⟩ to denote the inner product, and ∥ · ∥ to denote the standard
Euclidean norm. We write 1 to denote the vector with all entries equal to 1, and I to
denote the identity matrix. The i-th entry of a vector u is denoted by ui, while it is de-
noted by [uk]i for a time-varying vector uk. Given a vector v, we use min(v) and max(v)
to denote the smallest and the largest entry of v, respectively, i.e., min(v) = mini vi
and max(v) = maxi vi. A vector is said to be a stochastic vector if its entries are
nonnegative and sum to 1.

To denote the ij-th entry of a matrix A, we write Aij , and we write [Ak]ij when the
matrix is time-dependent. For any two matrices A and B of the same dimension, we
write A ≤ B to denote that Aij ≤ Bij for all i and j. A matrix is said to be nonnegative
if all its entries are nonnegative. For a nonnegative matrix, we use min(A+) to denote
the smallest positive entry of A, i.e., min(A+) = min{ij:Aij>0}Aij . A nonnegative
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matrix is said to be row-stochastic if each row entries sum to 1, and it is said to
be column-stochastic if each column entries sum to 1. In particular, if A ∈ Rn×n is
row-stochastic and B ∈ Rn×n is column stochastic, then A1 = 1 and 1

T

B = 1
T

.
Given a vector a ∈ Rn with positive entries a1, . . . , an, the a-weighted norm can be

induced in the vector space Rp × · · · × Rp (consisting of n copies of Rp), as follows:

∥x∥a =

√√√√ n∑
i=1

ai∥xi∥2 for x = (x1, . . . , xn) ∈ Rp × · · · × Rp.

When a = 1, we simply write ∥x∥. We also write ∥x∥a−1 to denote the norm induced

by the vector with entries 1/ai, i.e., ∥x∥a−1 =
√∑n

i=1
∥xi∥2

ai
. The following relations,

which can be proved by using Hölder’s inequality, will be useful in our analysis:

∥x∥ ≤
√

1
min(a) ∥x∥a for all x ∈ Rp × · · · × Rp and a > 0, (2a)

∥x∥ ≤ ∥x∥a−1 for all x ∈ Rp × · · · × Rp and a > 0 satisfying ⟨a,1⟩ = 1. (2b)

We let [n] = {1, . . . , n} for an integer n ≥ 1. A directed graph G = ([n], E) is
specified by the edge set E ⊆ [n]× [n] of ordered pairs of nodes. Given a directed graph
G = ([n], E), the sets N out

i and N in
i denote the out-neighbors and the in-neighbors of

a node i, i.e., N out
i = {j | (i, j) ∈ E} and N in

i = {j | (j, i) ∈ E}.
We say that a directed graph is strongly connected if there is a directed path from

any node to all other nodes in the graph. Given a directed path, the length of the path
is the number of edges in the path. We use the following definitions:

Definition 2.1 (Graph Diameter). The diameter of a strongly connected directed
graph G, denoted by D(G), is the length of the longest path in the collection of all
shortest directed paths connecting all ordered pairs of distinct nodes in G.

Let pjl denote a shortest directed path from node j to node l, where j ̸= l. A
collection P of directed paths in G is a shortest-path graph covering if pjl ∈ P and
plj ∈ P for any two nodes j, l ∈ [n], j ̸= l. The utility of the edge (j, l) with respect to
the covering P is the number of shortest paths in P that pass through the edge (j, l).
Define K(P) as the maximum edge-utility in P taken over all edges in the graph, i.e.,

K(P) = max
(j,l)∈E

∑
p∈P

χ{(j,l)∈p}, where χ{(j,l)∈p} is the indicator function taking value 1

when (j, l) ∈ p and, otherwise, taking value 0. Denote by S(G) the collection of all
possible shortest-path coverings of the graph G, we have the following definition.

Definition 2.2 (Maximal Edge-Utility). For a strongly connected directed graph G =
([n], E), the maximal edge-utility is the maximum value of K(P) taken over all possible
shortest-path coverings P ∈ S(G), i.e., K(G) = maxP∈S(G) K(P).

2.1. AB/Push-Pull Method and Assumptions

We consider a system with n agents, and let each agent i ∈ {1, 2, . . . , n} have a local
copy xi ∈ Rp of the decision variable and a direction yi ∈ Rp which is an estimate of
a “global update direction”. These variables are maintained and updated over time
and at iteration k, they are denoted by xki and yki , respectively. We present a dis-
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tributed algorithm, termed AB/Push-Pull algorithm to fairly capture independent
and simultaneous developments of two closely related methods, namely the Push-Pull
method of [17] and the method proposed in [35]. We consider the AB/Push-Pull gra-
dient method over a sequence {Gk} of directed graphs, where the agents communicate
over a graph Gk at the round k of updates. At every time k, the agents updates
are described by two non-negative matrices Ak and Bk that are compliant with the
connectivity structure of the graph Gk, i.e.,

[Ak]ij > 0 for all j ∈ N in
ik ∪ {i}, [Ak]ij = 0 for all j ̸∈ N in

ik ∪ {i}, (3a)

[Bk]ji > 0 for all j ∈ N out
ik ∪ {i}, [Bk]ji = 0 for all j ̸∈ N out

ik ∪ {i}. (3b)

Moreover, each matrix Ak is row-stochastic and each matrix Bk is column-stochastic,
i.e., Ak1 = 1 and 1

T

Bk = 1
T

for all k ≥ 0. The method works as follows: at time k,
every agent i sends its vector xki and a scaled direction [Bk]jiy

k
i to its out-neighbors

j ∈ N out
ik , while it keeps [Bk]iiy

k
i for its own update.

Upon the information exchange step, every agent i updates as follows: for all k ≥ 0,

xk+1
i =

∑
j∈N in

ik

[Ak]ijx
k
j − αyki , (4a)

yk+1
i =

∑
j∈N in

ik

[Bk]ijy
k
j +∇fi(x

k+1
i )−∇fi(x

k
i ), (4b)

where α > 0 is a stepsize. In this method, the agent i decides on the entries of Ak in
the ith row (for the in-neighbors j ∈ N in

ik ), while the value [Bk]ij is selected by agent
j ∈ N in

ik . Each agent i initializes the updates with an arbitrary vector x0i and with
y0i = ∇fi(x

0
i ), which does not require any coordination among agents. The update step

using the mixing matrix Ak is viewed as a pull-step, while the step utilizing the matrix
Bk is viewed as a push-step as it is reminiscent of the push-sum consensus method.

When the matrices Ak andBk are compatible with the underlying graphGk (see (3a)
and (3b)), we can re-write the method (4) as follows: for all i ∈ [n] and all k ≥ 0,

xk+1
i =

n∑
j=1

[Ak]ijx
k
j − αyki , (5a)

yk+1
i =

n∑
j=1

[Bk]ijy
k
j +∇fi(x

k+1
i )−∇fi(x

k
i ), (5b)

where x0i ∈ Rp is arbitrary and y0i = ∇fi(x
0
i ). (5c)

We analyze the convergence properties of the method under the following assumptions:

Assumption 1 (Strongly Connected Graphs). For each k, the directed graph Gk =
([n], Ek) is strongly connected.

Assumption 2 (Graph Compatible Ak). For each k, the matrix Ak is row-stochastic
and compatible with the graph Gk in the sense of relation (3a). Moreover, there exists
a scalar a > 0 such that min(A+

k ) ≥ a for all k ≥ 0.
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Assumption 3 (Graph Compatible Bk). For each k, the matrix Bk is column-
stochastic and compatible with the graph Gk in the sense of relation (3b). Moreover,
there exists a scalar b > 0 such that min(B+

k ) ≥ b for all k ≥ 0.

Assumption 4 (Lipschitz gradient). Each fi is continuously differentiable and has
L-Lipschitz continuous gradients, i.e., for some L > 0,

∥∇fi(x)−∇fi(u)∥ ≤ L∥x− u∥, for all x, u ∈ Rp.

Assumption 5 (Strong convexity). The average-sum function f = 1
n

∑n
i=1 fi is µ-

strongly convex, i.e., for some µ > 0,

⟨∇f(x)−∇f(u), x− u⟩ ≥ µ∥x− u∥2 for all x, u ∈ Rp.

3. Basic Results

3.1. Linear Combinations and Graphs

Certain contractive properties of the iterates produced by the method are inherited
from the use of the mixing terms

∑n
j=1[Ak]ijx

k
j and

∑n
j=1[Bk]ijy

k
j , and the fact that

the matrices Ak and Bk are compliant with a directed strongly connected graph Gk.
The following results will help us capture these contractive properties.

For a collection {ui, i ∈ [n]} ⊂ Rp of vectors and a collection {γi, i ∈ [n]} ⊂ R of
scalars, we have the following relations (see Lemma 1 and Corollary 1 of [11]):∥∥∥∥∥

n∑
i=1

γiui

∥∥∥∥∥
2

=

 n∑
j=1

γj

 n∑
i=1

γi∥ui∥2 −
1

2

n∑
i=1

n∑
j=1

γiγj∥ui − uj∥2. (6)

Moreover, if
∑n

i=1 γi = 1 holds, then we have

1

2

n∑
i=1

n∑
j=1

γiγj∥ui − uj∥2 =
n∑

i=1

γi

∥∥∥∥∥ui −
(

n∑
ℓ=1

γℓuℓ

)∥∥∥∥∥
2

, (7a)

∥∥∥∥∥
n∑

i=1

γiui − u

∥∥∥∥∥
2

=

n∑
i=1

γi∥ui − u∥2 −
n∑

i=1

γi

∥∥∥∥∥ui −
(

n∑
ℓ=1

γℓuℓ

)∥∥∥∥∥
2

, for all u ∈ Rp. (7b)

We also make use of the following result.

Lemma 3.1 ([11], Lemma 2). Let G = ([n], E) be a strongly connected directed graph,
where a vector xi is associated with node i for all i ∈ [n]. We then have

∑
(j,ℓ)∈E

∥xj − xℓ∥2 ≥
1

D(G)K(G)

n∑
j=1

n∑
ℓ=j+1

∥xj − xℓ∥2,

where D(G) is the diameter of the graph G and K(G) is the maximal edge-utility in
the graph (see Definitions 2.1 and 2.2).
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3.2. Implications of Stochastic Nature of Matrices Ak and Bk

The column stochastic property of the matrices Bk ensures that the sum of the y-
iterates of the method (5), at any time k, is equal to the sum of the gradients ∇fi(x

k
i ),

as seen in the following lemma.

Lemma 3.2. Consider the method in (5), and assume that each Bk is column-
stochastic. Then, we have

∑n
i=1 y

k
i =

∑n
i=1∇fi(x

k
i ) for all k ≥ 0.

Proof. The proof is by the mathematical induction on k.

Lemma 3.3 ([11], Lemma 3). Let Assumption 1 hold, and let {Ak} be a matrix
sequence satisfying Assumption 2. Then, there exists a sequence {ϕk} of stochastic
vectors such that

ϕ
T

k+1As = ϕ
T

k for all k ≥ 0, (8)

where the entries of each ϕk are positive and have a uniform lower bound, i.e.,

[ϕk]i ≥
an

n
for all i ∈ [n],

with a ∈ (0, 1) being the lower bound on the positive entries of the matrices Ak.

For the matrices Bk, we define the stochastic vector sequence {πk} as follows:

πk+1 = Bkπk, initialized with π0 =
1

n
1. (9)

We examine the sequence {πk} in the following lemma.

Lemma 3.4. Let Assumption 1 hold and let the matrix sequence {Bk} satisfy As-
sumption 3. Then, the vectors πk generated by (9) are stochastic vectors such that

[πk]i ≥
bn

n
for all i ∈ [n] and k ≥ 0,

where b ∈ (0, 1) is the lower bound on the positive entries of the matrices Bk.

Proof. We prove that each πk is stochastic by using the mathematical induction on k.
For k = 0, the vector π0 = 1

n1 is stochastic. Suppose now the vector πk is stochastic.
Choose any index i ∈ [n] and consider the entry [πk+1]i. By the definition of πk+1 in (9),
since the entries in Bk and πk are nonnegative, we have [πk+1]i =

∑n
j=1[Bk]ij [πk]j ≥ 0.

Furthermore, by summing the entries of πk+1, and using the facts that Bk is column
stochastic and πk is a stochastic vector, we obtain 1

T

πk+1 = 1
T

Bkπk = 1Tπk = 1.
Thus, πk+1 is a stochastic vector.

To prove the lower bound result, we consider separately the case for k = 0, . . . , n−1
and the case k ≥ n. The bound is obviously valid for k = 0, since π0 = 1

n1. Let k be
such that 1 ≤ k ≤ n− 1. By the definition of πk, we have

πk = Bk−1 · · ·B0π0 =
1

n
Bk−1 · · ·B01.
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Hence, it follows that

[πk]i =
1

n
[Bk−1 · · ·B01]i =

1

n

n∑
j=1

[Bk−1 · · ·B0]ij ≥
1

n
[Bk−1 · · ·B0]ii ≥

bk

n
,

where the last inequality follows from [Bk−1 · · ·B0]ii ≥ bk, which is valid since all
matrices Bk have positive diagonals with diagonal entries larger than or equal to b
(see Assumption 3). Since k < n, it follows that

[πk]i ≥
bk

n
>

bn

n
for all k = 1, . . . , n− 1.

Now, consider the case k ≥ n. Using the definition of πk, we obtain

πk = Bk−1 · · ·Bk−nπk−n.

We note that the matrix [Bk−1 · · ·Bk−n] has all entries positive as it represents di-
rected paths among the nodes in the composition of the strongly connected graphs
Gk−1, . . . ,Gk−n. Moreover, every entry of [Bk−1 · · ·Bk−n] is at least as large as b

n, i.e.,

[Bk−1 · · ·Bk−n]ij ≥ bn for all i, j ∈ [n],

which follows by Assumption 3 ensuring that each Bt has positive entries on links in
the graph Gt, which are at least large as b. Hence, it follows that

[πk]i =

n∑
j=1

[Bk−1 · · ·Bk−n]ij [πk−n]j ≥
n∑

j=1

bn[πk−n]j = bn >
bn

n
,

where the last equality holds since πs is a stochastic vector for all s.

3.3. Contractive Property of Gradient Method

Lemma 3.5. For a µ-strongly convex function F with L-Lipschitz continuous gradi-
ents, at the point x∗ = argminx F (x), we have

∥x− x∗ − α∇F (x)∥ ≤ q(α)∥x− x∗∥ for all x and for all α with 0 < α < 2L−1,

where q(α) = max{|1− αµ|, |1− αL|} < 1.

The proof of Lemma 3.5 can be found within the proof of Theorem 3 of Chapter 1
in [13] for a twice continuously differentiable function. The result has been extended
in [18] (see Lemma 10 therein) to a more general case of a differentiable function.

4. Convergence Analysis

In this section, we specify and analyze the behavior of three quantities that are critical
components of the convergence proof of the method: the distance of a suitably defined
weighted average x̂k from the solution x∗ of problem (1), a weighted dispersion of the
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iterates xki from the weighted average x̂k, and a weighted dispersion of the agents’
directions yki from the sum

∑n
i=1 y

k
i .

4.1. Weighted Averages of Agents’ x-variables

We define x̂k to be the ϕk-weighted averages of the iterates xki produced by the
AB/Push-Pull method (5), i.e.,

x̂k =

n∑
i=1

[ϕk]ix
k
i for all k ≥ 0, (10)

where {ϕk} is the sequence of stochastic vectors satisfying ϕ
T

k+1Ak = ϕ
T

k (see

Lemma 3.3). In the next proposition, we establish a recursion relation for x̂k, and
a relation for their distance from the optimal solution x∗ of problem (1).

Proposition 4.1. Let Assumptions 2-5 hold. Then, the following statements are valid:

(a) The weighted average sequence {x̂k} defined in (10) satisfies,

x̂k+1 = x̂k − α

n∑
i=1

[ϕk+1]iy
k
i for all k ≥ 0. (11)

(b) Let the stepsize α in method (5) be such that 0 < α < 2
nL , where L is the gradient

Lipschitz constant from Assumption 4. Then, we have for all k ≥ 0,

∥x̂k+1 − x∗∥ ≤ qk(α)∥x̂k − x∗∥+ αL

√
n

min(ϕk)
D(xk, ϕk) + αS(yk, πk),

where qk(α) = max{|1− αnmin(πk)µ|, |1− αnmin(πk)L|} < 1.

Proof. (a) By the definition of x̂k+1 and the x-update relation given in (5a), we have

x̂k+1 =

n∑
i=1

[ϕk+1]ix
k+1
i =

n∑
i=1

[ϕk+1]i

n∑
j=1

[Ak]ijx
k
j − α

n∑
i=1

[ϕk+1]iy
k
i .

For the double-sum term, it follows that

n∑
i=1

[ϕk+1]i

n∑
j=1

[Ak]ijx
k
j =

n∑
j=1

(
n∑

i=1

[ϕk+1]i[Ak]ij

)
xkj =

n∑
j=1

[ϕk]jx
k
j = x̂k,

where the second equality follows by ϕ
T

k+1Ak = ϕ
T

k (see Lemma 3.3), and the last

equality uses the definition of x̂k, thus, establishes the desired relation in part (a).
(b) Under Assumption 5, the unique minimizer x∗ of f(x) over x ∈ Rp exists. By
subtracting the optimal point x∗ from both sides of the relation in part (a) (see (11)),
and by adding and subtracting

∑n
i=1[ϕk+1]iαn[πk]i∇f(x̂k), we obtain

x̂k+1 − x∗ = x̂k − x∗ −
n∑

i=1

[ϕk+1]iαn[πk]i∇f(x̂k) + α

n∑
i=1

[ϕk+1]i

(
n[πk]i∇f(x̂k)− yki

)
.
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Therefore, by the convexity of the norm and the fact that ϕk+1 is stochastic, we have

∥x̂k+1−x∗∥ ≤
n∑

i=1

[ϕk+1]i∥x̂k−x∗−αn[πk]i∇f(x̂k)∥+α

n∑
i=1

[ϕk+1]i∥yki −n[πk]i∇f(x̂k)∥.

By Assumption 4 and Assumption 5, the function f is µ-strongly convex and has L-
Lipschitz continuous gradients. Thus, for a stepsize α satisfying α ∈ (0, 2

n[πk]iL
), for all

i ∈ [n], by Lemma 3.5 it follows that

∥x̂k − x∗ − αn[πk]i∇f(x̂k)∥ ≤ qi,k(α)∥x̂k − x∗∥,

with qi,k(α) = max{|1− αn[πk]iµ|, |1− αn[πk]iL|}.
Let qk(α) = max{|1 − αnmin(πk)µ|, |1 − αnmin(πk)L|} < 1, using the preceding

relation with the stochasticity of ϕk+1 yields

n∑
i=1

[ϕk+1]i∥x̂k − x∗ − αn[πk]i∇f(x̂k)∥ ≤
n∑

i=1

[ϕk+1]iqi,k(α)∥x̂k − x∗∥ ≤ qk(α)∥x̂k − x∗∥.

Therefore,

∥x̂k+1 − x∗∥ ≤ qk(α)∥x̂k − x∗∥+ α

n∑
i=1

[ϕk+1]i∥yki − n[πk]i∇f(x̂k)∥. (12)

Since max(ϕk+1) ≤ 1, to estimate the last term in (12), we factor out [πk]i as follows

n∑
i=1

[ϕk+1]i∥yki −n[πk]i∇f(x̂k)∥ ≤
n∑

i=1

∥yki −n[πk]i∇f(x̂k)∥ =

n∑
i=1

[πk]i

∥∥∥∥ yki
[πk]i

−n∇f(x̂k)

∥∥∥∥ .
We add and subtract

∑n
ℓ=1 y

k
ℓ , and use the triangle inequality for the norm to obtain

n∑
i=1

[πk]i

∥∥∥∥ yki
[πk]i

− n∇f(x̂k)

∥∥∥∥ ≤
n∑

i=1

[πk]i

∥∥∥∥∥ yki
[πk]i

−
n∑

ℓ=1

ykℓ

∥∥∥∥∥+
n∑

i=1

[πk]i

∥∥∥∥∥
n∑

ℓ=1

ykℓ − n∇f(x̂k)

∥∥∥∥∥
≤

√√√√ n∑
i=1

[πk]i

∥∥∥∥∥ yki
[πk]i

−
n∑

ℓ=1

ykℓ

∥∥∥∥∥
2

+

∥∥∥∥∥
n∑

ℓ=1

ykℓ −n∇f(x̂k)

∥∥∥∥∥≤ S(yk, πk)+

∥∥∥∥∥
n∑

ℓ=1

ykℓ −n∇f(x̂k)

∥∥∥∥∥ .
Combining the two preceding relations yields

n∑
i=1

[ϕk+1]i∥yki − n[πk]i∇f(x̂k)∥ ≤ S(yk, πk) +

∥∥∥∥∥
n∑

ℓ=1

ykℓ − n∇f(x̂k)

∥∥∥∥∥ . (13)

By Lemma 3.2,
∑n

ℓ=1 y
k
ℓ =

∑n
ℓ=1∇fℓ(x

k
ℓ ), hence, in view of f = 1

n

∑n
ℓ=1 fℓ, we have∥∥∥∥∥

n∑
ℓ=1

ykℓ − n∇f(x̂k)

∥∥∥∥∥ =

∥∥∥∥∥
n∑

ℓ=1

(
∇fℓ(x

k
ℓ )−∇fℓ(x̂

k)
)∥∥∥∥∥ ≤

n∑
ℓ=1

∥∇fℓ(x
k
ℓ )−∇fℓ(x̂

k)∥.
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Since each fi has L-Lipschitz continuous gradients (by Assumption 4), it follows that∥∥∥∥∥
n∑

ℓ=1

ykℓ − n∇f(x̂k)

∥∥∥∥∥ ≤ L

n∑
ℓ=1

∥xkℓ − x̂k∥ ≤ L

√
n

min(ϕk)
D(xk, ϕk). (14)

Substituting (13) and (14) in relation (12) gives the desired relation in part (b).

The condition qk(α) < 1 of Proposition 4.1(b) holds for example when α ∈ (0, 2
nL).

4.2. Weighted Dispersion of Agents’ x-variables

In this section, we define and analyze the behavior of a ϕk-weighted dispersion of the
iterates xki , i ∈ [n], of the method (5) from their weighted average x̂k, i.e.,

D(xk, ϕk) =

√√√√ n∑
j=1

[ϕk]j∥xkj − x̂k∥2 for all k ≥ 0, (15)

where the stochastic vectors ϕk satisfy ϕ
T

k+1Ak = ϕ
T

k and xk = (xk1, . . . , x
k
n).

The dispersion D(xk, ϕk) can be interpreted as the ϕk-weighted norm of the differ-
ence between xk and the vector x̂k = (x̂k, . . . , x̂k) consisting of n-copies of x̂k, i.e.,

D(xk, ϕk) = ∥xk − x̂k∥ϕk
. (16)

Using the definition of xk+1
i in (5a), we can write

xk+1
i = zki − αyki , zki =

n∑
j=1

[Ak]ijx
k
j , for all i ∈ [n] and all k ≥ 0. (17)

Define xk+1 = (xk+1
1 , . . . , xk+1

n ) and, similarly, define zk = (zk1 , . . . , z
k
n) and yk =

(yk1 , . . . , y
k
n). Then, we can write the preceding relations compactly as follows

xk+1 = zk − αyk for all k ≥ 0. (18)

We start our analysis by recalling the next lemma:

Lemma 4.2 ([11], Lemma 6). Let G = ([n], E) be a strongly connected directed graph,
and let A be an row-stochastic matrix that is compatible with the graph and has positive
diagonal entries, i.e., Aij > 0 when j = i and (j, i) ∈ E, and Aij = 0 otherwise. Also,

let ϕ be a stochastic vector and let π be a nonnegative vector such that π
T

A = ϕ
T

.
Let x1, . . . , xn ∈ Rp be a given collection of vectors, and consider the vectors zi =∑n
j=1Aijxj for all i ∈ [n]. Then, we have

n∑
i=1

πi∥zi−u∥2 ≤
n∑

j=1

ϕj∥xj−u∥2−min(π) (min(A+))
2

max2(ϕ)D(G)K(G)

n∑
j=1

ϕj∥xj−x̂ϕ∥2 for all u ∈ Rp,

where D(G) and K(G) are the diameter and the maximal edge-utility of G, respectively.
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The relation for the dispersion D(xk, ϕk) is given in the following proposition.

Proposition 4.3. Let Assumption 1 and Assumption 2 hold. We have for all k ≥ 0,

D(xk+1, ϕk+1) ≤ ckD(xk, ϕk) + α

√√√√√ n∑
i=1

[ϕk+1]i

∥∥∥∥∥∥yki −
n∑

j=1

[ϕk+1]jy
k
j

∥∥∥∥∥∥
2

,

where the scalar ck ∈ (0, 1) is given by ck =
√

1− min(ϕk+1) a2

max2(ϕk)D(Gk)K(Gk)
and ϕk are the

stochastic vectors from Lemma 3.3

Proof. We define vk = (
∑n

j=1[ϕk+1]jy
k
j , . . . ,

∑n
j=1[ϕk+1]jy

k
j ), for which we can write

the relation for the weighted averages in Proposition 4.1(a) in compact form, as follows

x̂k+1 = x̂k − αvk.

Upon subtracting the preceding relation and the compact representation of x-iterate
process in (18), we obtain

xk+1 − x̂k+1 = zk − x̂k − α
(
yk − vk

)
.

Taking the ϕk+1-norm on both sides of the preceding relation and using the triangle
inequality and the positive scaling property of a norm, we obtain

∥xk+1 − x̂k∥ϕk+1
= ∥zk − x̂k − α

(
yk − vk

)
∥ϕk+1

≤ ∥zk − x̂k∥ϕk+1
+ α∥yk − vk∥ϕk+1

.

The left hand side of the preceding relation corresponds to the dispersion
D(xk+1, ϕk+1) (see (16)). The terms on the right hand side we write explicitly in
terms of the vector components with zki =

∑n
j=1[Ak]ijx

k
j (see (17)), and obtain

D(xk+1, ϕk+1) ≤

√√√√ n∑
i=1

[ϕk+1]i∥zki − x̂k∥2 + α

√√√√√ n∑
i=1

[ϕk+1]i

∥∥∥∥∥∥yki −
n∑

j=1

[ϕk+1]jy
k
j

∥∥∥∥∥∥
2

. (19)

Next, we note that the vectors zki , i ∈ [n], satisfy Lemma 4.2, with A = Ak, and

xi = xki for all i ∈ [n]. Moreover, since we have ϕ
T

k+1Ak = ϕ
T

k by Lemma 3.3, Lemma 4.2

applies with π = ϕk+1, ϕ = ϕk and x̂ϕ = x̂k, which yields

n∑
i=1

[ϕk+1]i∥zki − x̂k∥2 ≤
(
1− min(ϕk+1) a

2

max2(ϕk)D(Gk)K(Gk)

) n∑
j=1

[ϕk]j∥xkj − x̂k∥2, (20)

where we use min(A+
k ) ≥ a (see Assumption 2). Therefore,√√√√ n∑
i=1

[ϕk+1]i∥zki − x̂k∥2 ≤ ck

√√√√ n∑
j=1

[ϕk]j∥xkj − x̂k∥2, (21)
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where ck =
√

1− min(ϕk+1) a2

max2(ϕk)D(Gk)K(Gk)
.

By recognizing the term on the right hand side of (21) corresponds to D(xk, ϕk),
and by combining estimate (21) with (19), we obtain the desired relation.

We conclude this section with a result establishing an estimate for ∥xk+1−xk∥ and∥∥∑n
i=1 y

k
i

∥∥, which will be soon used in the analysis of the behavior of the y-iterates.

Lemma 4.4. Let Assumption 1 and Assumption 2 hold. Then, for all k ≥ 0, we have

∥∥∥xk+1 − xk
∥∥∥ ≤

(
ck

√
1

min(ϕk+1)
+

√
1

min(ϕk)

)
D(xk, ϕk) + α∥yk∥. (22)

Additionally, if Assumption 3 and Assumption 4 hold. Then we have for all k ≥ 0,∥∥∥∥∥
n∑

i=1

yki

∥∥∥∥∥ ≤ L

√
n

min(ϕk)

(
∥x̂k − x∗∥+D(xk, ϕk)

)
.

Proof. Adding and subtracting x̂k = (x̂k, . . . , x̂k), we have∥∥∥xk+1 − xk
∥∥∥ =

∥∥∥xk+1 − x̂k + x̂k − xk
∥∥∥ ≤

∥∥∥zk − x̂k
∥∥∥+ ∥∥∥xk − x̂k

∥∥∥+ α∥yk∥,

where the last inequality follows from the compact representation of x-iterate process
(see (18)) and the triangle inequality. By the relation for norms in (2a), it follows that

∥∥∥xk+1 − xk
∥∥∥ ≤

√
1

min(ϕk+1)

∥∥∥zk − x̂k
∥∥∥
ϕk+1

+

√
1

min(ϕk)

∥∥∥xk − x̂k
∥∥∥
ϕk

+ α∥yk∥.

We notice that by the relation in (20), we have
∥∥∥zk − x̂k

∥∥∥
ϕk+1

≤ ck

∥∥∥xk − x̂k
∥∥∥
ϕk

. Thus,

we obtain the first relation in (22) upon using the definition of D(xk, ϕk) in (15).
Now, we consider

∥∥∑n
i=1 y

k
i

∥∥. By Lemma 3.2, we have∥∥∥∥∥
n∑

i=1

yki

∥∥∥∥∥ =

∥∥∥∥∥
n∑

i=1

∇fi(x
k
i )

∥∥∥∥∥ =

∥∥∥∥∥
n∑

i=1

(
∇fi(x

k
i )−∇fi(x

∗)
)∥∥∥∥∥ ,

where we use the fact that
∑n

i=1∇fi(x
∗) = 0, which holds since x∗ is the solution to

problem (1). Therefore, by using the assumption that each fi has Lipschitz continuous
gradients with a Lipschitz constant L > 0, we obtain∥∥∥∥∥

n∑
i=1

yki

∥∥∥∥∥ ≤
n∑

i=1

∥∥∥∇fi(x
k
i )−∇fi(x

∗)
∥∥∥ ≤ L

n∑
i=1

∥xki − x∗∥ = L
√
n∥xk − x∗∥.

Using the relation for norms in (2a), we further obtain∥∥∥∥∥
n∑

i=1

yki

∥∥∥∥∥ ≤ L

√
n

min(ϕk)
∥xk − x∗∥ϕk

. (23)
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Applying the relation (7b) with ui = xki , γi = [ϕk]i for all i, and u = x∗ yields

n∑
i=1

[ϕk]i∥xki − x∗∥2 = ∥x̂k − x∗∥2 +
n∑

i=1

[ϕk]i∥xki − x̂k∥2,

where x̂k =
∑n

ℓ=1[ϕk]ℓx
k
ℓ . Hence,

∥∥∥xk − x∗
∥∥∥
ϕk

=

√√√√∥x̂k − x∗∥2 +
n∑

i=1

[ϕk]i∥xki − x̂k∥2 ≤ ∥x̂k−x∗∥+

√√√√ n∑
i=1

[ϕk]i∥xki − x̂k∥2,

where the inequality in the preceding relation follows from
√
a+ b ≤

√
a+

√
b, which

is valid for any a, b ≥ 0. Therefore, using the definition of D(xk, ϕk) in (15), we have∥∥∥xk − x∗
∥∥∥
ϕk

≤ ∥x̂k − x∗∥+D(xk, ϕk), (24)

from which the second desired relation follows by using (23) and (24).

4.3. Weighted Dispersion of Scaled Agents’ y-variables

In this section, we analyze the behavior of the directions yki generated by the method
in (5). A preliminary result that establishes a basic relation corresponding to a column-
stochastic matrix B is given in the following lemma.

Lemma 4.5. Let G = ([n], E) be a strongly connected directed graph, and let B be
an n × n column-stochastic matrix that is compatible with the graph and has positive
diagonal entries, i.e., Bij > 0 when j = i and (j, i) ∈ E, and Bij = 0 otherwise. Also,
let ν be a stochastic vector with all entries positive, i.e., νi > 0 for all i ∈ [n], and let
the vector π be given by π = Bν. Let y1, . . . , yn ∈ Rp be a given collection of vectors,
and consider the vectors wi =

∑n
j=1Bijyj for all i ∈ [n]. Then, we have√√√√ n∑

i=1

πi

∥∥∥∥∥wi

πi
−

m∑
ℓ=1

yℓ

∥∥∥∥∥
2

≤ τ

√√√√ n∑
i=1

νi

∥∥∥∥∥yiνi −
n∑

ℓ=1

yℓ

∥∥∥∥∥
2

,

where the scalar τ ∈ (0, 1) is given by τ =
√

1− min2(ν) (min(B+))2

max2(ν)max(π)D(G)K(G) , where D(G)

and K(G) are the diameter and the maximal edge-utility of the graph G, respectively.

Proof. For any i ∈ [n], by the definition of wi, we have

∥wi∥2 =

∥∥∥∥∥∥
n∑

j=1

Bijyj

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
n∑

j=1

Bijνj
yj
νj

∥∥∥∥∥∥
2

.

We further expand the squared norm term by using Lemma 6 with γj = Bijνj and
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uj = yj/νj for all j ∈ [n]. Hence, we obtain

∥wi∥2 =

(
n∑

ℓ=1

Biℓνℓ

)
n∑

j=1

Bijνj

∥∥∥∥yjνj
∥∥∥∥2 − 1

2

n∑
j=1

n∑
ℓ=1

BijνjBiℓνℓ

∥∥∥∥yjνj − yℓ
νℓ

∥∥∥∥2 .
Recalling the definition of π, i.e., π = Bν, we have πi =

∑n
ℓ=1Biℓνℓ, so that we have

∥wi∥2 = πi

n∑
j=1

Bijνj

∥∥∥∥yjνj
∥∥∥∥2 − 1

2

n∑
j=1

n∑
ℓ=1

BijνjBiℓνℓ

∥∥∥∥yjνj − yℓ
νℓ

∥∥∥∥2 .
Since the matrix B is nonnegative and compatible with a strongly connected graph
G, and since the vector ν has all positive entries, it follows that the vector π also has
all entries positive. By dividing with πi both sides of the preceding relation, and then
by summing over all i, we obtain

n∑
i=1

π−1
i ∥wi∥2 =

n∑
i=1

n∑
j=1

Bijνj

∥∥∥∥yjνj
∥∥∥∥2 − 1

2

n∑
i=1

π−1
i

n∑
j=1

n∑
ℓ=1

BijνjBiℓνℓ

∥∥∥∥yjνj − yℓ
νℓ

∥∥∥∥2 .
For the first term on the right hand side of the preceding inequality, we have that

n∑
i=1

n∑
j=1

Bijνj

∥∥∥∥yjνj
∥∥∥∥2 = n∑

i=1

n∑
j=1

Bijν
−1
j ∥yj∥2 =

n∑
j=1

(
n∑

i=1

Bij

)
ν−1
j ∥yj∥2 =

n∑
j=1

ν−1
j ∥yj∥2,

where the last equality follows since the matrix B is column-stochastic. Therefore,

n∑
i=1

π−1
i ∥wi∥2 =

n∑
j=1

ν−1
j ∥yj∥2 −

1

2

n∑
i=1

π−1
i

n∑
j=1

n∑
ℓ=1

BijνjBiℓνℓ

∥∥∥∥yjνj − yℓ
νℓ

∥∥∥∥2 . (25)

We note that the vector π is stochastic sinceB is column stochastic and ν is a stochastic
vector. Hence,

n∑
i=1

π−1
i ∥wi∥2 =

n∑
i=1

πi

∥∥∥∥wi

πi

∥∥∥∥2 = n∑
i=1

πi

∥∥∥∥∥wi

πi
−

m∑
ℓ=1

wℓ

∥∥∥∥∥
2

+

∥∥∥∥∥
n∑

ℓ=1

wℓ

∥∥∥∥∥
2

,

where the last relation is obtained by using relation (7b) with u = 0, ui = wi/πi, and
γi = πi. Using a similar line of arguments, since ν is a stochastic vector, we obtain

n∑
j=1

ν−1
j ∥yj∥2 =

n∑
j=1

νj

∥∥∥∥∥yjνj −
m∑
ℓ=1

yℓ

∥∥∥∥∥
2

+

∥∥∥∥∥
n∑

ℓ=1

yℓ

∥∥∥∥∥
2

.

Since B is column-stochastic, we also have
∑n

ℓ=1wℓ =
∑n

ℓ=1 yℓ, so that by combining
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the preceding two relations with (25), we have that

n∑
i=1

πi

∥∥∥∥∥wi

πi
−

m∑
ℓ=1

yℓ

∥∥∥∥∥
2

=

n∑
j=1

νj

∥∥∥∥∥yjνj −
m∑
ℓ=1

yℓ

∥∥∥∥∥
2

− 1

2

n∑
i=1

π−1
i

n∑
j=1

n∑
ℓ=1

BijνjBiℓνℓ

∥∥∥∥yjνj − yℓ
νℓ

∥∥∥∥2. (26)

Next, we estimate the second term on the right hand side of (26). By exchanging the
order of the summation so that the summation over i is the last in the order, we obtain

n∑
i=1

π−1
i

n∑
j=1

n∑
ℓ=1

BijνjBiℓνℓ

∥∥∥∥yjνj − yℓ
νℓ

∥∥∥∥2 = n∑
j=1

n∑
ℓ=1

νjνℓ

∥∥∥∥yjνj − yℓ
νℓ

∥∥∥∥2
(

n∑
i=1

π−1
i BijBiℓ

)

≥
n∑

j=1

∑
ℓ∈N in

j

νjνℓ

∥∥∥∥yjνj − yℓ
νℓ

∥∥∥∥2
(

n∑
i=1

π−1
i BijBiℓ

)
.

The graph G is strongly connected implying that every node j must have a nonempty
in-neighbor set N in

j . Moreover, by assumption we have that Bjj > 0 every j ∈ [n] and

Bjℓ > 0 for all ℓ ∈ N in
j . Therefore, it follows that

n∑
i=1

π−1
i BijBiℓ ≥ π−1

j BjjBjℓ ≥ π−1
j

(
min

ij:Bij>0
Bij

)2

≥
(
min
j∈[n]

π−1
j

)(
min

ij:Bij>0
Bij

)2

.

Using the notation min(B+) = minij:Bij>0Bij , we have

n∑
i=1

π−1
i

n∑
j=1

n∑
ℓ=1

BijνjBiℓνℓ

∥∥∥∥yjνj − yℓ
νℓ

∥∥∥∥2 ≥ (min(B+))
2

max(π)

n∑
j=1

∑
ℓ∈N in

j

νjνℓ

∥∥∥∥yjνj − yℓ
νℓ

∥∥∥∥2

≥ min2(ν) (min(B+))
2

max(π)

∑
(ℓ,j)∈E

∥∥∥∥yjνj − yℓ
νℓ

∥∥∥∥2. (27)
We bound the sum

∑
(ℓ,j)∈E ∥yj − yℓ∥2 from below by employing Lemma 3.1. By as-

sumption the graph G = ([n], E) is strongly connected, by Lemma 3.1 it follows that

∑
(j,ℓ)∈E

∥∥∥∥yjνj − yℓ
νℓ

∥∥∥∥2≥ 1

D(G)K(G)

n∑
j=1

n∑
ℓ=j+1

∥∥∥∥yjνj − yℓ
νℓ

∥∥∥∥2= 1

D(G)K(G)

1

2

n∑
j=1

n∑
ℓ=j

∥∥∥∥yjνj − yℓ
νℓ

∥∥∥∥2,
where D(G) is the diameter of the graph G, and K(G) is the maximal edge-utility in
the graph G. The preceding relation and relation (27) yield

n∑
i=1

π−1
i

n∑
j=1

n∑
ℓ=1

BijνjBiℓνℓ

∥∥∥∥yjνj − yℓ
νℓ

∥∥∥∥2 ≥ min2(ν) (min(B+))
2

max(π)D(G)K(G)

1

2

n∑
j=1

n∑
ℓ=1

∥∥∥∥yjνj − yℓ
νℓ

∥∥∥∥2
≥ min2(ν) (min(B+))

2

max2(ν)max(π)D(G)K(G)

1

2

n∑
j=1

n∑
ℓ=1

νjνℓ

∥∥∥∥yjνj − yℓ
νℓ

∥∥∥∥2 . (28)
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To express the last term, since ⟨ν,1⟩ = 1, we we apply relation (7a) with γi = νi and
ui = yi/νi for all i ∈ [n], and thus obtain

1

2

n∑
j=1

n∑
ℓ=1

νjνℓ

∥∥∥∥yjνj − yℓ
νℓ

∥∥∥∥2 = n∑
i=1

νi

∥∥∥∥∥yiνi −
n∑

ℓ=1

yℓ

∥∥∥∥∥
2

.

By combining the preceding relation with inequality (28), and by substituting the
resulting lower bound back in (26), we obtain

n∑
i=1

πi

∥∥∥∥∥wi

πi
−

m∑
ℓ=1

yℓ

∥∥∥∥∥
2

≤

(
1− min2(ν) (min(B+))

2

max2(ν)max(π)D(G)K(G)

)
n∑

i=1

νi

∥∥∥∥∥yiνi −
n∑

ℓ=1

yℓ

∥∥∥∥∥
2

.

which yields the desired relation after taking the square roots.

The third quantity that we use to capture the behavior of the AB/Push-Pull method
is the πk-weighted dispersion of the scaled vectors yk1/[πk]1, . . . , y

k
n/[πk]n, i.e,

S(yk, πk) =

√√√√ n∑
i=1

[πk]i

∥∥∥∥∥ yki
[πk]i

−
n∑

ℓ=1

ykℓ

∥∥∥∥∥
2

, (29)

where πk is the stochastic vector defined in (9), yki are the directions used in method (5)
at time k, and yk = (yk1 , . . . , y

k
n). We note that S(yk, πk) can also be interpreted

through the πk-induced norm in the Cartesian product space Rp×· · ·×Rp. Specifically,
using the definition of the iterates yk+1

i in (5b), we express yk+1
i as follows:

yk+1
i = wk

i +∇fi(x
k+1
i )−∇fi(x

k
i ), with wk

i =

n∑
j=1

[Bk]ijy
k
j . (30)

By defining wk = (wk
1 , . . . , w

k
n) and gk = (∇f1(x

k
1), . . . ,∇fn(x

k
n)), we have

yk+1 = wk + gk+1 − gk for all k ≥ 0. (31)

Viewing yk+1 as the matrix with columns yk+1
i , and similarly wk and gk, we can write

yk+1diag−1(πk+1) = wkdiag−1(πk+1) + (gk+1 − gk)diag−1(πk+1) for all k ≥ 0, (32)

where diag(u) is the diagonal matrix with the vector u entries on its diagonal. With
this alternative view of the method, we have

S(yk, πk) = ∥ykdiag−1(πk)− sk∥πk
with sk = (sk, . . . , sk), sk =

n∑
ℓ=1

ykℓ . (33)

We provide the recursive relation for S(yk, πk) in the following proposition.

17



Proposition 4.6. Let Assumptions 1-4 hold, we have for all k ≥ 0,

∥yk∥π−1
k

=

√√√√S2(yk, πk) +

∥∥∥∥∥
n∑

ℓ=1

ykℓ

∥∥∥∥∥
2

≤ S(yk, πk) +

∥∥∥∥∥
n∑

ℓ=1

ykℓ

∥∥∥∥∥ ,
S(yk+1, πk+1)≤τkS(y

k, πk)+αLrk∥yk∥+Lrk

(
ck

√
1

min(ϕk+1)
+

√
1

min(ϕk)

)
D(xk, ϕk).

Here, the scalars rk > 0 and τk ∈ (0, 1) are given by

rk =
√
n+

1√
min(πk+1)

, τk =

√
1− min2(πk) b2

max2(πk)max(πk+1)D(Gk)K(Gk)
,

where ϕk and πk are the stochastic vectors associated with the matrices Ak and Bk.

Proof. Firstly, we note that under given assumptions, by Lemma 3.4 we have that
the stochastic vectors πk, k ≥ 0, defined in (9), all have positive entries. Noting that

∥yk∥2
π−1
k

=

n∑
i=1

∥yki ∥2

[πk]i
=

n∑
i=1

[πk]i

∥∥∥∥ yki
[πk]i

∥∥∥∥2 ,
and using relation (7b) for the weighted average of vectors, where γi = [πk]i and
ui = yki /[πk]i for all i, and u = 0, we obtain

n∑
i=1

[πk]i

∥∥∥∥ yki
[πk]i

∥∥∥∥2 = n∑
i=1

[πk]i

∥∥∥∥∥ yki
[πk]i

−
n∑

ℓ=1

ykℓ

∥∥∥∥∥
2

+

∥∥∥∥∥
n∑

ℓ=1

ykℓ

∥∥∥∥∥
2

= S2(yk, πk) +

∥∥∥∥∥
n∑

ℓ=1

ykℓ

∥∥∥∥∥
2

,

where the last equality is obtained from the definition of S(yk, πk) (see (29)). Hence,

∥yk∥π−1
k

=

√√√√S2(yk, πk) +

∥∥∥∥∥
n∑

ℓ=1

ykℓ

∥∥∥∥∥
2

≤ S(yk, πk) +

∥∥∥∥∥
n∑

ℓ=1

ykℓ

∥∥∥∥∥ , (34)

where the inequality is obtained by using
√
a+ b ≤

√
a +

√
b, which is valid for any

two scalars a, b ≥ 0. Thus, we have established the first relation of the proposition.
We next proceed to show the relation for S(yk+1, πk+1). By (32), we have

yk+1diag−1(πk+1) = wkdiag−1(πk+1) + (gk+1 − gk)diag−1(πk+1) for all k ≥ 0.

By subtracting the vector sk+1 = (sk+1, . . . , sk+1), where sk+1 =
∑n

ℓ=1 y
k+1
ℓ , from

both sides of the preceding relation, we have for all k ≥ 0,

yk+1diag−1(πk+1)−sk+1 = wkdiag−1(πk+1)−sk+(sk−sk+1)+(gk+1−gk)diag−1(πk+1).

By taking πk+1-induced norm on both sides of the preceding equality and by using
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relation between S(yk+1, πk+1) and the πk+1-induced norm (see (33)), we have that

S(yk+1, πk+1) = ∥wkdiag−1(πk+1)− sk + (sk− sk+1) + (gk+1− gk)diag−1(πk+1)∥πk+1

≤∥wkdiag−1(πk+1)−sk∥πk+1
+∥sk−sk+1∥πk+1

+ ∥(gk+1−gk)diag−1(πk+1)∥πk+1
. (35)

We next consider ∥wkdiag−1(πk+1)− sk∥πk+1
, for which by using the definitions of

wk and sk, i.e., wk = (wk
1 , . . . , w

k
n) and sk = (sk, . . . , sk), we have that

∥wkdiag−1(πk+1)− sk∥πk+1
=

√√√√ n∑
i=1

[πk+1]i

∥∥∥∥ wk
i

[πk+1]i
− sk

∥∥∥∥2,
where sk =

∑n
ℓ=1 y

k
ℓ (see (33)). We now apply Lemma 4.5 with the following identifi-

cation G = Gk, B = Bk, π = πk+1, and ν = πk, which yields

n∑
i=1

[πk+1]i

∥∥∥∥∥ wk
i

[πk+1]i
−

m∑
ℓ=1

yℓ

∥∥∥∥∥ ≤ τk

√√√√ n∑
i=1

[πk]i

∥∥∥∥∥ yi
[πk]i

−
n∑

ℓ=1

yℓ

∥∥∥∥∥
2

,

with τk =
√

1− min2(πk) b2

max2(πk)max(πk+1)D(Gk)K(Gk)
, where we use min(B+

k ) ≥ b. Hence,

∥wkdiag−1(πk+1)− sk∥πk+1
≤ τk

√√√√ n∑
i=1

[πk]i

∥∥∥∥∥ yi
[πk]i

−
n∑

ℓ=1

yℓ

∥∥∥∥∥
2

= τk S(y
k, πk),

where the equality follows from the definition of S(yk, πk) in (29). Thus, by substitut-
ing the preceding relation back in (35), we have

S(yk+1, πk+1)≤ τkS(y
k, πk) + ∥sk−sk+1∥πk+1

+ ∥(gk+1−gk)diag−1(πk+1)∥πk+1
. (36)

Next, we consider the term ∥sk − sk+1∥πk+1
in (36), for which we have

∥sk − sk+1∥πk+1
=

√√√√ n∑
i=1

[πk+1]i∥sk+1 − sk∥2 = ∥sk+1 − sk∥,

where the last equality follows since the vector πk+1 is stochastic. By the definition of
sk in (33), we have sk =

∑n
ℓ=1 y

k
ℓ . Since Bk is column-stochastic, by Lemma 3.2(a)

we further have
∑n

ℓ=1 y
k
ℓ =

∑n
ℓ=1∇fℓ(x

k
ℓ ), implying that

∥sk − sk+1∥πk+1
=

∥∥∥∥∥
n∑

ℓ=1

(
∇fℓ(x

k+1
ℓ )−∇fℓ(x

k
ℓ )
)∥∥∥∥∥ ≤

n∑
ℓ=1

∥∇fℓ(x
k+1
ℓ )−∇fℓ(x

k
ℓ )∥.

By using the Lipschitz continuity of the gradients ∇fi, we obtain

∥sk − sk+1∥πk+1
≤ L

n∑
ℓ=1

∥xk+1
ℓ − xkℓ ∥ ≤ L

√
n∥xk+1 − xk∥. (37)
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For the term ∥(gk+1 − gk)diag−1(πk+1)∥πk+1
in relation (36), we have

∥(gk+1 − gk)diag−1(πk+1)∥πk+1
= ∥gk+1 − gk∥π−1

k+1
=

√√√√ n∑
i=1

∥∇fi(x
k+1
i )−∇fi(xki )∥2
[πk+1]i

.

By the Lipschitz continuity property of the gradients ∇fi(·), we obtain

∥(gk+1−gk)diag−1(πk+1)∥πk+1
≤L

√√√√ n∑
i=1

∥xk+1
i −xki ∥2
[πk+1]i

≤ L√
min(πk+1)

∥xk+1−xk∥. (38)

Now, we combine the estimates in (37) and (38) with relation (36) and obtain that

S(yk+1, πk+1) ≤ τk S(y
k, πk) + Lrk∥xk+1 − xk∥,

where rk =
√
n+ 1√

min(πk+1)
. The desired relation follows from the preceding relation

and the estimate for ∥xk+1 − xk∥ in Lemma 4.4 (see (22)).

5. Convergence Results

In this section, we combine the results obtained in Sections 4.1–4.3 to obtain a com-
posite relation for the main quantities of interest.

5.1. Composite Relation

We first give the relations in a compact form by defining the vector Vk as follows

Vk =
(
∥x̂k − x∗∥, D(xk, ϕk), S(y

k, πk)
)T

, (39)

which we recall below for convenience:

D(xk, ϕk) =

√√√√ n∑
i=1

[ϕk]i∥xki − x̂k∥2, S(yk, πk) =

√√√√ n∑
j=1

[πk]j

∥∥∥∥∥ ykj
[πk]j

−
n∑

ℓ=1

ykℓ

∥∥∥∥∥
2

,

where x̂k =
∑n

i=1[ϕk]ix
k
i and x∗ is the solution of the problem (1). Using Proposi-

tions 4.1(c), 4.3, and 4.6, we establish a relation between Vk+1 and Vk that will involve
the constants ck, and τk from Proposition 4.3 and Proposition 4.6, given by

qk(α) = max
{
|1− αnmin(πk)µ|, |1− αnmin(πk)L|

}
, rk =

√
n+

1√
min(πk+1)

, (40a)

ck =

√
1− min(ϕk+1) a2

max2(ϕk)D(Gk)K(Gk)
, τk =

√
1− min2(πk) b2

max2(πk)max(πk+1)D(Gk)K(Gk)
. (40b)

For the vector Vk we have the following result.
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Proposition 5.1. Let Assumptions 1-5 hold. Consider the iterates produced by the
AB/Push-Pull method in (5) with the stepsize α ∈ (0, 2(nL)−1), we have

Vk+1 ≤ Mk(α)Vk for all k ≥ 0,

where Mk(α) is the matrix given by

Mk(α) =


qk(α) αL

√
nφk α

αLγk
√
nφk ck + αLγk

√
nφk αγk

αL2rk
√
nφk Lrk(ckφk+1 + φk) + αL2rk

√
nφk τk + αLrk

 .

with γk =
√

max
j∈[n]

([ϕk+1]j [πk]j), φk =
√

1
min(ϕk)

, and qk(α), ck, τk, and rk as in (40).

Proof. The first row of Mk(α) is given by Proposition 4.1(b) when α ∈ (0, 2(nL)−1).
Next, we consider the relation for D(xk+1, ϕk+1). By Proposition 4.3, we have that

D(xk+1, ϕk+1) ≤ ckD(xk, ϕk) + α

√√√√√ n∑
i=1

[ϕk+1]i

∥∥∥∥∥∥yki −
n∑

j=1

[ϕk+1]jy
k
j

∥∥∥∥∥∥
2

. (41)

Using relation (7b) with γi = [ϕk+1]i, ui = yki for all i and u = 0, it follows that

n∑
i=1

[ϕk+1]i

∥∥∥∥∥∥yki −
n∑

j=1

[ϕk+1]jy
k
j

∥∥∥∥∥∥
2

≤
n∑

i=1

[ϕk+1]i

∥∥∥yki ∥∥∥2 .
By multiplying and dividing each term in the summation on the right hand side with
[πk]i, we find that

n∑
i=1

[ϕk+1]i

∥∥∥∥∥∥yki −
n∑

j=1

[ϕk+1]jy
k
j

∥∥∥∥∥∥
2

≤
n∑

i=1

[ϕk+1]i[πk]i

∥∥yki ∥∥2
[πk]i

≤ max
j∈[n]

([ϕk+1]j [πk]j)

n∑
i=1

∥∥yki ∥∥2
[πk]i

.

Therefore, by taking the square roots on both sides of the preceding relation, we obtain√√√√√ n∑
i=1

[ϕk+1]i

∥∥∥∥∥∥yki −
n∑

j=1

[ϕk+1]jy
k
j

∥∥∥∥∥∥
2

≤
√

max
j∈[n]

([ϕk+1]j [πk]j)

√√√√ n∑
i=1

∥∥yki ∥∥2
[πk]i

= γk∥yk∥π−1
k
,

where the equality follows upon using γk =
√

maxj∈[n]([ϕk+1]j [πk]j) and the definition

of ∥yk∥π−1
k
. Substituting the preceding estimate back in relation (41), we find that,

D(xk+1, ϕk+1) ≤ ckD(xk, ϕk) + αγk∥yk∥π−1
k

for all k ≥ 0.
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Using the preceding relation, the relation ∥yk∥π−1
k

≤ S(yk, πk)+
∥∥∑n

ℓ=1 y
k
ℓ

∥∥ established
in Proposition 4.6, and the following relation from Lemma 4.4∥∥∥∥∥

n∑
i=1

yki

∥∥∥∥∥ ≤ L

√
n

min(ϕk)

(
∥x̂k − x∗∥+D(xk, ϕk)

)
, (42)

we obtain the desired relation for D(xk+1, ϕk+1) (given by the second row of Mk(α)).
Lastly, the relation for S(yk+1, πk+1) comes from Proposition 4.6. For the quantity

∥yk∥, using the vector-induced norm property in (2b) and the fact that the vector πk
is stochastic for all k, we have ∥yk∥ ≤ ∥yk∥π−1

k
. Upon using the relations ∥yk∥π−1

k
≤

S(yk, πk) +
∥∥∑n

ℓ=1 y
k
ℓ

∥∥ established in Proposition 4.6 and (42), we obtain

S(yk+1, πk+1) ≤ (τk + αLrk) S(y
k, πk) + αL2rk

√
n

min(ϕk)
∥x̂k − x∗∥

+ Lrk

(
ck

√
1

min(ϕk+1)
+

√
1

min(ϕk)
+ αL

√
n

min(ϕk)

)
D(xk, ϕk),

which gives the third row of Mk(α).

5.2. Convergence Result and Range for the Stepsize

From Proposition 5.1, to prove that Vk tends to 0 at a geometric rate, it is sufficient to
show that Mk(α) ≤ M(α) for some matrix M(α), and then choose a suitable stepsize
α ∈ (0, 2(nL)−1) such that the eigenvalues of M(α) are inside the unit circle, i.e., the
spectral radius of M(α) is less than 1.

We now determine an upper bound matrixM(α) forMk(α). Let c ∈ (0, 1), τ ∈ (0, 1),
r, and φ, be upper bounds for ck, τk, rk, and φk, respectively, i.e.,

max
k≥0

ck ≤ c, max
k≥0

τk ≤ τ, max
k≥0

rk ≤ r, max
k≥0

φk ≤ φ. (43)

For the quantity qk(α) as in (40a), when α ∈ (0, 2(nL + nµ)−1), we have qk(α) =
1−αnmin(πk)µ < 1. Let σ be a lower bound for min(πk), k ≥ 0, corresponding to the
graph sequence {Gk}. In the most general case of graph sequences, by Lemma 3.4 we
have that σ ≤ mink≥0{min(πk)} with σ ≥ bn

n > 0. Thus, we have the following upper
bound for qk(α):

max
k≥0

qk(α) ≤ 1− αnσµ ∈ (0, 1) where σ ≤ min
k≥0

{min(πk)}. (44)

We notice also that γk = maxj∈[n]([ϕk+1]j [πk]j) ≤ 1 since ϕk and πk are stochastic

vectors. Using these upper-bounds, for α ∈ (0, 2(nL+nµ)−1), we have Mk(α) ≤ M(α),
for all k ≥ 0, with the matrix M(α) given by

M(α) =


1− αnσµ αL

√
nφ α

αL
√
nφ c+ αL

√
nφ α

αL2r
√
nφ Lr(1 + c)φ+ αL2r

√
nφ τ + αLr

 . (45)

22



Proposition 5.2. Let Assumptions 1-5 hold. Consider the iterates produced by the
method in (5) and the notation in (43)-(44). If the stepsize α > 0 is chosen such that

α ≤ min

{
1− c

L
√
nφ

,
1− τ

Lr
,
nσµ(1− τ)(1− c)

η
,

2

n(L+ µ)

}
, (46)

where η = L(nσµ+ L
√
nφ) ((1 + c)rφ+ (1− c)r + (1− τ)

√
nφ) > 0. Then,

lim
k→∞

∥xki − x∗∥ = 0, for all i ∈ [n].

Proof. Recall that by Proposition 5.1, we have Vk+1 ≤ Mk(α)Vk, for all k ≥ 0.
Therefore, with the matrix M(α) defined as in (45), we have

Vk+1 ≤ M(α)Vk, for all k ≥ 0. (47)

Thus, ∥x̂k − x∗∥, D(xk, ϕk) and S(yk, πk) all converge to 0 linearly at rate O
(
ρkM
)
if

the spectral radius ρM(α) of M(α) satisfies ρM(α) < 1. By Lemma 8 of [17], we will
have ρM(α) < 1 if all diagonal entries of M(α) are less than 1 and det(I−M(α)) > 0,
where

det(M(α)− I) =

∣∣∣∣∣∣∣∣∣∣
−αnσµ αL

√
nφ α

αL
√
nφ c+ αL

√
nφ− 1 α

αL2r
√
nφ Lr(1 + c)φ+ αL2r

√
nφ τ + αLr − 1

∣∣∣∣∣∣∣∣∣∣
.

Hence,

det(M(α)− I) = α [αη − nσµ(1− τ)(1− c)] ,

where η = L(nσµ + L
√
nφ) ((1 + c)rφ+ (1− c)r + (1− τ)

√
nφ) > 0 since c < 1 and

τ < 1. It remains to choose α ∈ (0, 2(nL+nµ)−1) so that the following conditions are
satisfied 

c+ αL
√
nφ < 1

τ + αLr < 1

αη − nσµ(1− τ)(1− c) < 0.

Solving the preceding system of inequalities yields the range in (46).

Remark 1. We can relax Assumption 1 by considering a C-strongly-connected graph
sequence, i.e., there exists some integer, C ≥ 1 such that the graph with edge set

EC
k =

⋃(k+1)C−1
i=kC Ei is strongly connected for every k ≥ 0. In this case, the more

general results of Lemma 3.3 and Lemma 3.4 state that there exist stochastic vector
sequences {ϕk} and {πk}, such that for all k ≥ 0,

ϕ′
k+C (Ak+C−1 . . . Ak+1Ak) = ϕ′

k and πk+C = (Bk+C−1 . . . Bk+1Bk)πk.
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Furthermore,

[ϕk]i ≥
anC

n
and [πk]i ≥

bnC

n
for all i ∈ [n].

With the use of these results, the rest of convergence analysis follows similarly to our
analysis for strongly connected graphs, by noticing that contractions due to row- and
column-stochastic matrices occur after time k = C.

6. Numerical Simulations

In this section, we evaluate the performance of the proposed algorithm through a
sensor fusion problem over a network, as described in [37]. The estimation problem is
given as follows

min
x∈Rp

n∑
i=1

(
∥zi −Hix∥2 + λi∥x∥2

)
,

where x is the unknown parameter to be estimated, Hi ∈ Rs×p represents the mea-
surement matrix, zi = Hix + ωi ∈ Rs is the noisy observation of sensor i with some
noise ωi and λi is the regularization parameter for the local cost function of sensor i.

As in [17], we set n = 20, p = 20 and s = 1 so that each local cost function is
ill-conditioned, requiring the coordination among agents to achive fast convergence.
The measurement matrix Hi is generated from a uniform distribution in the unit Rs×p

space which is then normalized such that its Lipschitz constant is equal to 1. The noise
ωi follows an i.i.d. Gaussian process with zero mean and unit variance N (0, 1). The
regularization parameter is chosen to be λi = 0.01, for all i ∈ [n], to ensure the strong
convexity of the loss function.

Figure 1: Residuals plot

We compare our proposed AB/Push-Pull algorithm against Push-DIGing [10]. The
simulation is carried out over a random sequence of time-varying directed communica-
tion network . The performance is compared in terms of the relative residual defined

as ∥xk−x∗∥2
2

∥x0−x∗∥2
2
. Figure 1 illustrates the performance of the above algorithms under a ran-

domly generated time-varying network. As discussed in [17], AB/Push-Pull allows for
much larger value of the stepsize compared to Push-DIGing and it converges faster
especially for ill-conditioned problems and when graphs are not well balanced.
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7. Conclusions

In this paper, we study a distributed optimization problem over a time-varying directed
communication network. We consider the AB/Push-Pull gradient-based method where
each node maintains estimates of the optimal decision variable and the average gra-
dient of the agents’ objective functions. The information about the decision variable
is pushed to its neighbors, while the information about the gradients is pulled from
its neighbors using both row- and column-stochastic weights simultaneously. We ex-
plore the contractive properties of the iterates produced by the method, which are
inherited from the use of the mixing terms and the fact that the mixing matrices are
compliant with a directed strongly connected graph. We prove that the algorithm con-
verges linearly to the global minimizer for smooth and strongly convex cost functions.
The convergence result is derived based on the choice of appropriate stepsize values
for which explicit upper bounds are provided in terms of the properties of the cost
functions, the mixing matrices, and the graph connectivity structure.
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[21] S. Ram, V. Veeravalli, and A. Nedić, Distributed Non-Autonomous Power Control through
Distributed Convex Optimization, in INFOCOM. 2009, pp. 3001–3005.

[22] F. Saadatniaki, R. Xin, and U.A. Khan, Decentralized Optimization Over Time-Varying
Directed Graphs With Row and Column-Stochastic Matrices, IEEE Trans. Autom. Control
65 (2020), pp. 4769–4780.

[23] W. Shi, Q. Ling, G. Wu, and W. Yin, A Proximal Gradient Algorithm for Decentralized
Composite Optimization, IEEE Trans. Signal Process. 63 (2015), pp. 6013–6023.

[24] W. Shi, Q. Ling, G. Wu, and W. Yin, EXTRA: An Exact First-Order Algorithm for
Decentralized Consensus Optimization, SIAM J. Optim. 25 (2015), pp. 944–966.

[25] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, On the Linear Convergence of the ADMM
in Decentralized Consensus Optimization, IEEE Trans. Signal Process. 62 (2014), pp.
1750–1761.
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